The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0
 0  X  0  0  0  X  X  X  0  0  0  0  X  X  X  X  0  0  0  0  X  X  X  X  0  X  0  X  0  0  2 X+2 X+2 X+2 X+2  2  2  2  2 X+2 X+2  2  2  2  2 X+2 X+2 X+2 X+2  2  2 X+2 X+2  2  2  X X+2  2  2  2  2 X+2 X+2 X+2  X  0  0  X  X  X
 0  0  X  0  X  X  X  0  0  0  X  X  X  X  0  0  2  2 X+2 X+2 X+2 X+2  2  2  2 X+2  2 X+2 X+2 X+2  2  0  0  0  0 X+2 X+2  2  0 X+2  X X+2 X+2  0  2  2  2 X+2  X  X  X  X X+2  2  0  2  2  0  2  X  X  X X+2  2  2  0  X  X  0  0
 0  0  0  X  X  0  X  X  2 X+2 X+2  2  2 X+2 X+2  2  2  X X+2  0  2  X X+2  0  0  0 X+2 X+2  X  2  X X+2  0  X  2  X  2  0  X  2 X+2 X+2  0  2 X+2  X  2  0  X X+2  0  0  X  2 X+2  X  0  0  X  X  2  2 X+2 X+2  2  0  X  0 X+2  0

generates a code of length 70 over Z4[X]/(X^2+2,2X) who�s minimum homogenous weight is 67.

Homogenous weight enumerator: w(x)=1x^0+16x^67+55x^68+112x^69+144x^70+112x^71+54x^72+16x^73+1x^76+1x^136

The gray image is a code over GF(2) with n=280, k=9 and d=134.
This code was found by Heurico 1.16 in 21.6 seconds.